Alzheimer's Disease Mechanisms and Early Diagnosis at Mild Cognitive Impairment

Robert Nagele, Ph.D. NJ Institute for Successful Aging and Department of Medicine RowanSOM

DISCLOSURES

Durin Technologies, Inc. Founder, Chief Scientific Officer, Stockholder

Beren Technologies, Inc. Founder , Chief Scientific Officer Stockholder

Funding

Michael J Fox Foundation Alzheimer's Association Osteopathic Heritage Foundation Foundation Venture Capital Group Boye Foundation GlaxoSmithKline

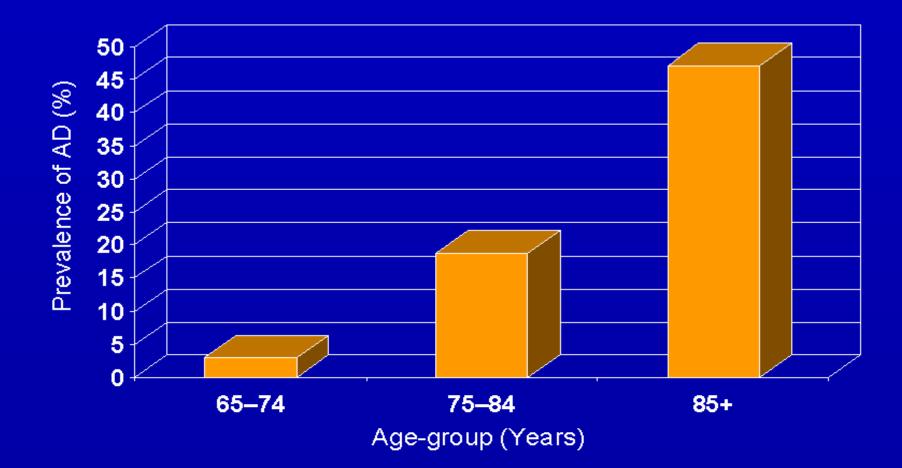
AD Statistics

AD is the most common cause of dementia among people age 65 and older.

- Estimate that around 4.5 million people now have AD.
- For every 5-year age group beyond 65, the percentage of people with AD doubles.

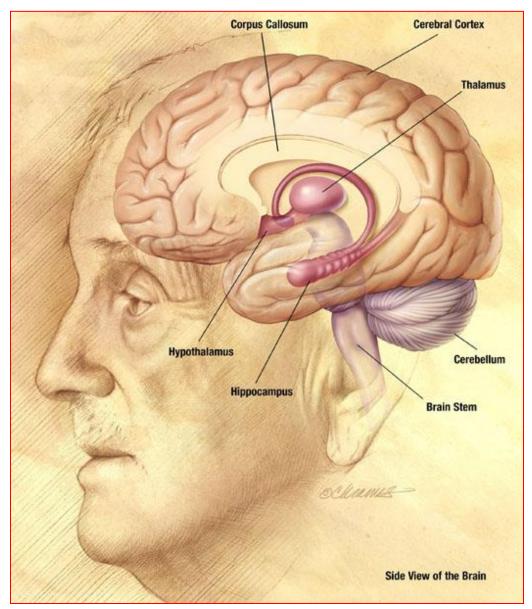
 By 2050, 13.2 million older Americans are expected to have AD - if the current numbers hold and if no preventive treatments become available.

Alzheimer's Disease Hits Home Nagele Family



My Grandparents

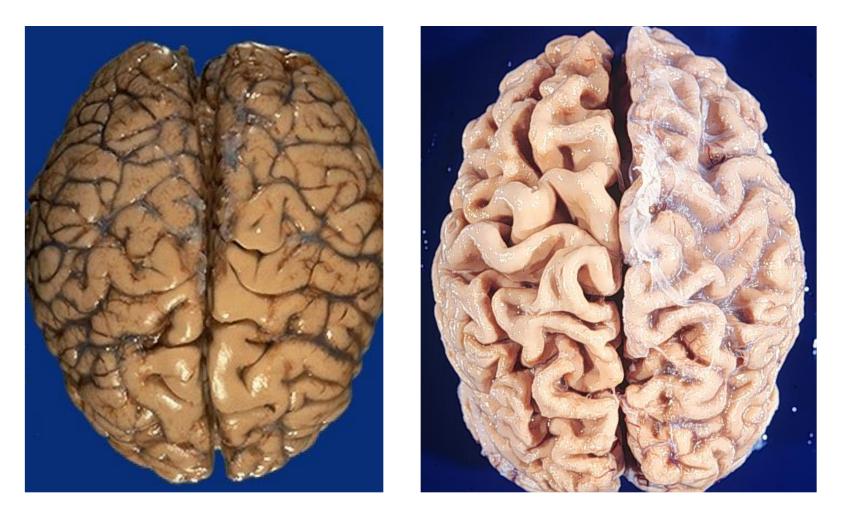
My Mother's Siblings


And now my father and mother-in-law

Prevalence of AD by Age

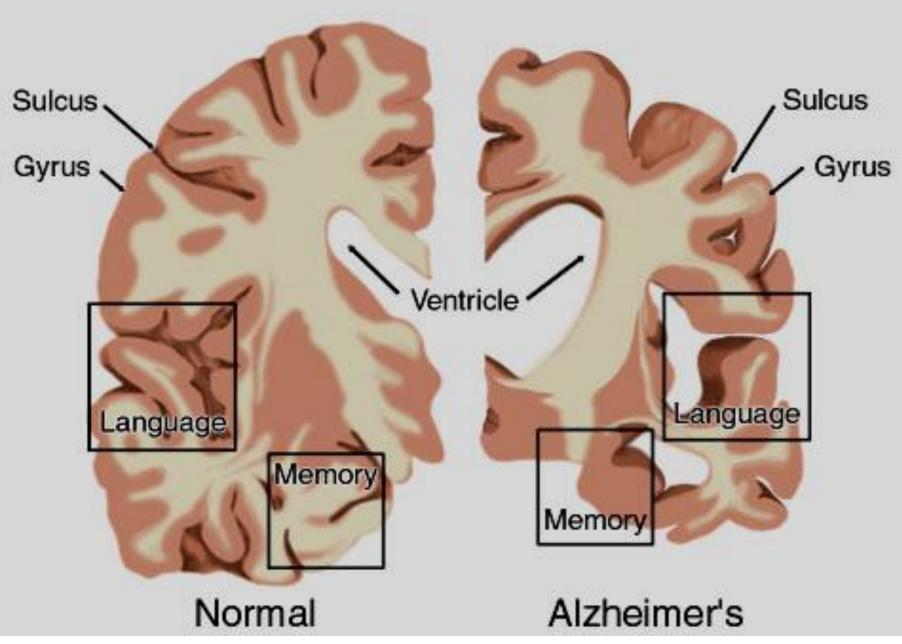
Reprinted with permission from Evans et al. JAMA. 1989;262:2551-2556. © 1989 American Medical Association.

How Does AD Happen?

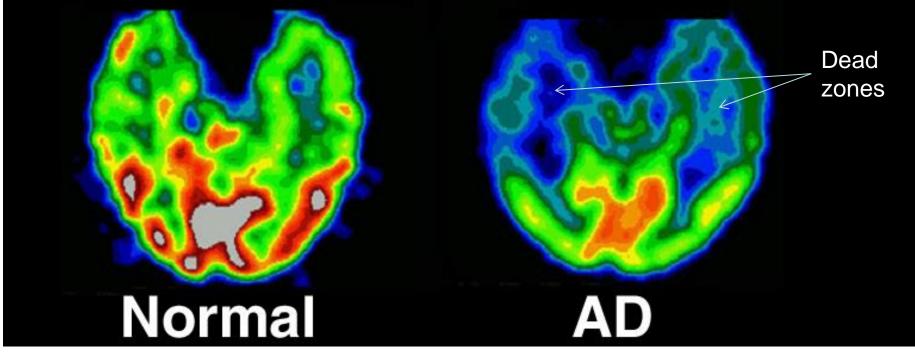

Inside the Human Brain

To understand AD, it's important to know a bit about the brain...

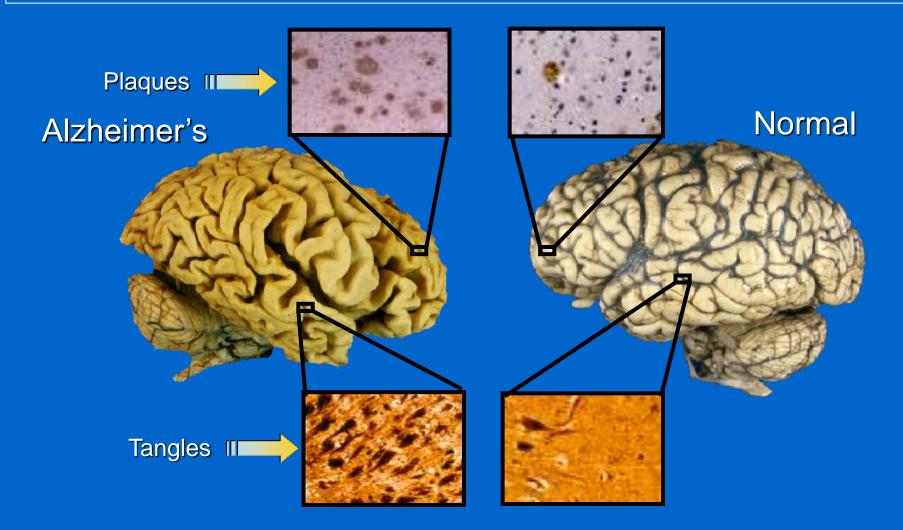
<u>The Brain's Vital</u> <u>Statistics</u>


- Adult weight: about 3 pounds
- Adult size: a medium cauliflower
- Number of neurons: 100,000,000,000 (100 billion)
- Number of synapses (the gap between neurons): 100,000,000,000,000 (100 trillion)

Normal vs Alzheimer Brain Gross Pathology

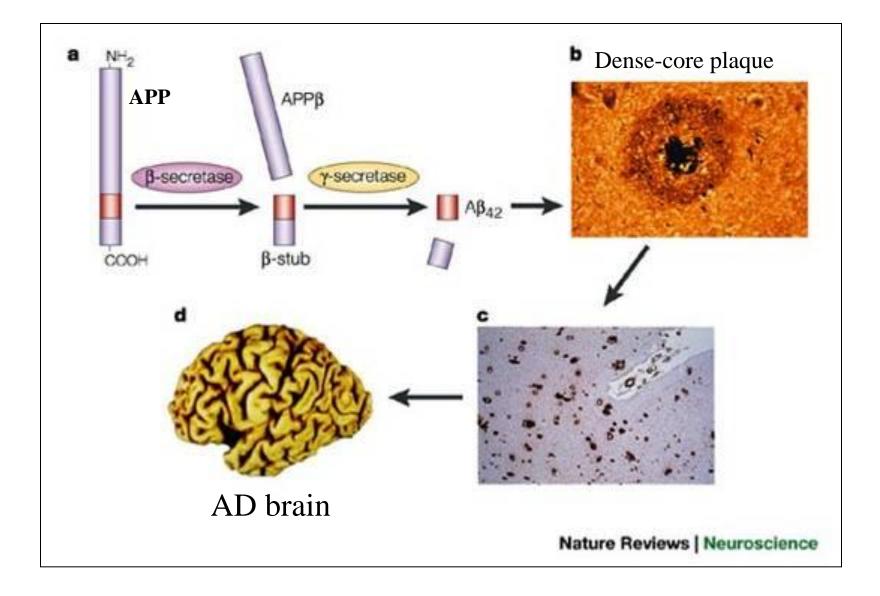

Brain shrinkage – thinning of gyral folds – broadening of fissures

Brain Cross-Sections

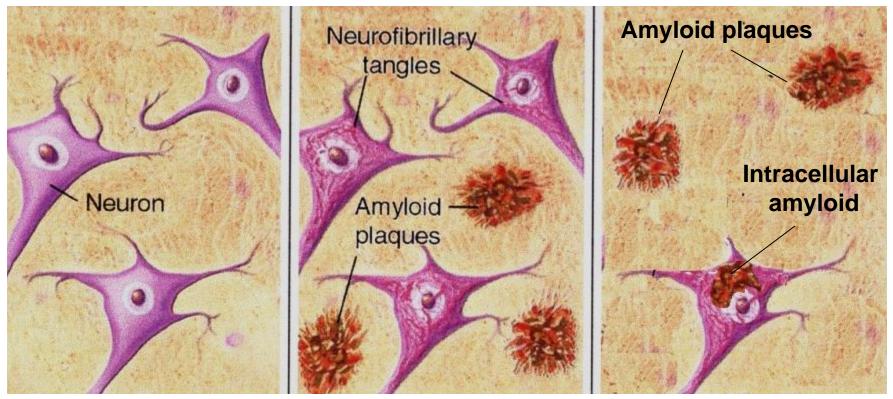

PET scans show much reduced glucose utilization in the AD brain compared to controls

Brain Glucose Metabolism in AD

Reason: Rampant cell death means less cells capable of metabolizing glucose


Amyloid Plaques and Neurofibrillary Tangles Pathological Hallmarks of Alzheimer's Disease

Courtesy of Harry Vinters, MD.

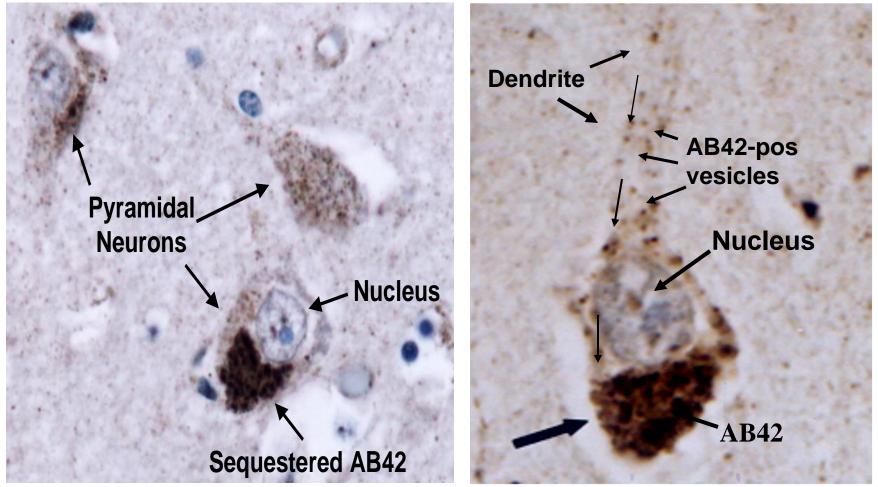

Amyloid (Abeta42) deposition makes neurons sick. Sick neurons retract their axons and dendrites and lose synaptic connections with each other \rightarrow Loss of memory and cognition Sick neuron Amyloid plaque Retracted corkscrew" dendrites Alzheimer cells healthy cells Amyloid plaques contain Abeta42

Amyloid beta (Abeta42) deposits in the brain and arises from sequential cleavage of the amyloid precursor protein

Alzheimer's Disease How Amyloid (Abeta42) Deposits in the Brain ← Our New Model →

Old Model

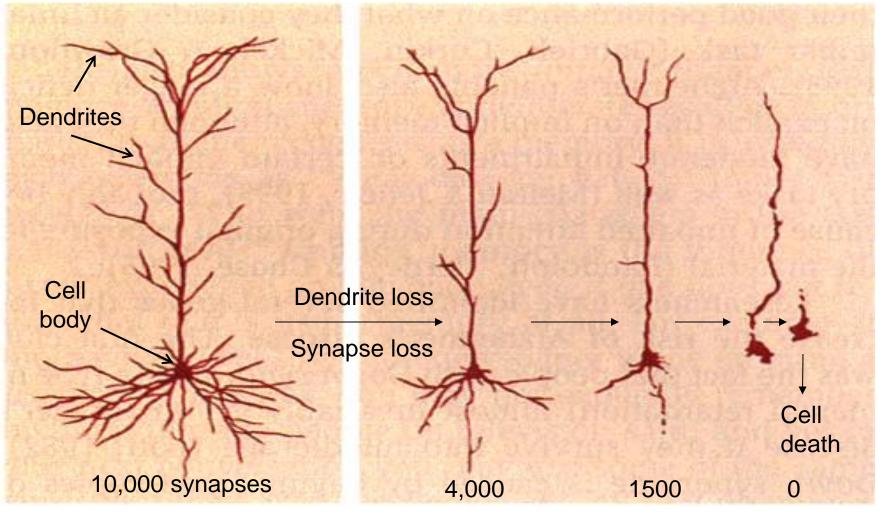
Normal healthy brain


AD brain **Extracellular amyloid**

AD brain Intracellular amyloid

New Model Means New Potential Drug Targets

In AD, neurons accumulate excessive Abeta42 (amyloid) prior to cell lysis and amyloid plaque formation

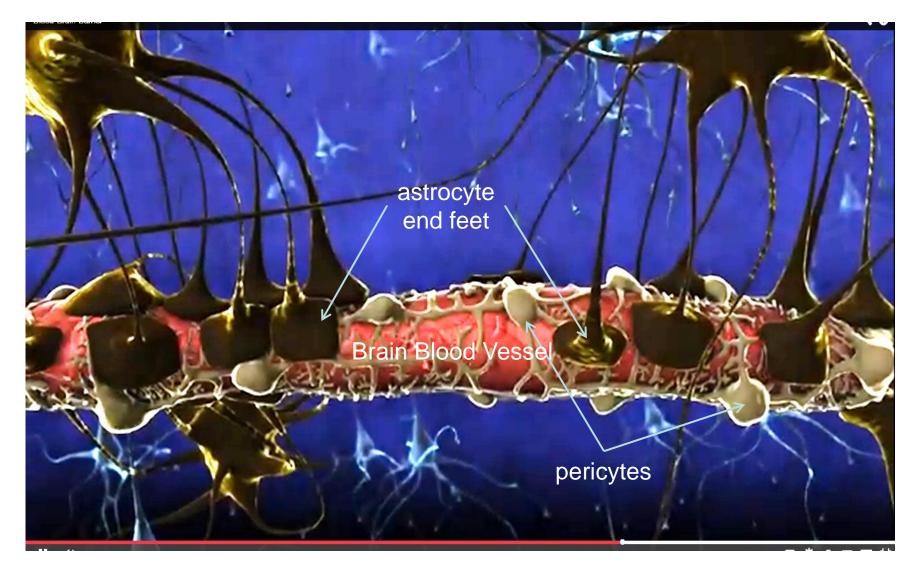

AD brain sections immunostained for Abeta42 (AB42)

Note abundant Abeta42-positive (presumably) endocytic vesicles

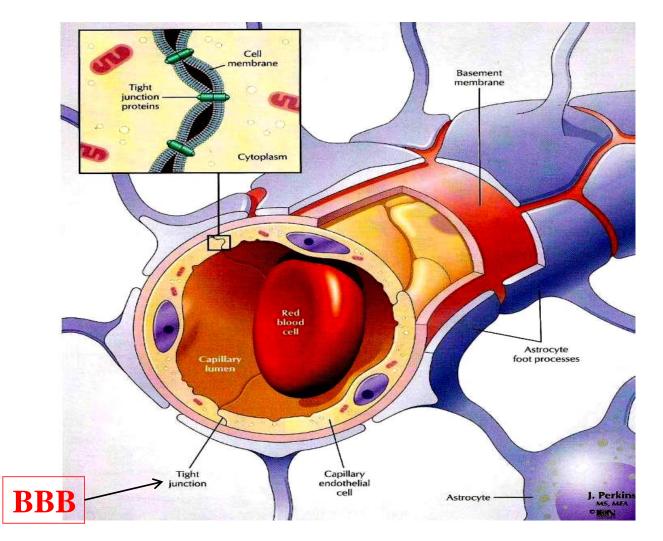
Alzheimer's is a synaptic loss disease

Normal versus progressively degenerating pyramidal neuron

Months to years – Synaptic loss is tied to onset of symptoms

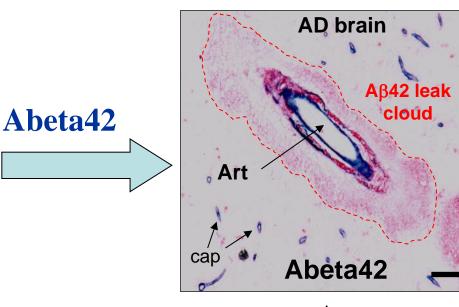

How can we stop amyloid deposition in the brain?

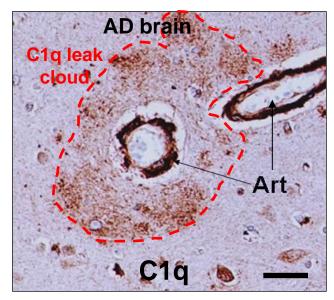
Answer: Find the source

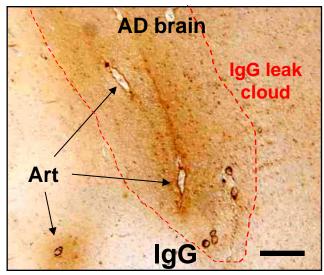

The blood is a major source.

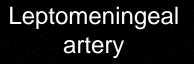
In healthy brains, the blood-brain barrier (BBB) keeps the soluble amyloid in the vessel.

Blood-brain barrier

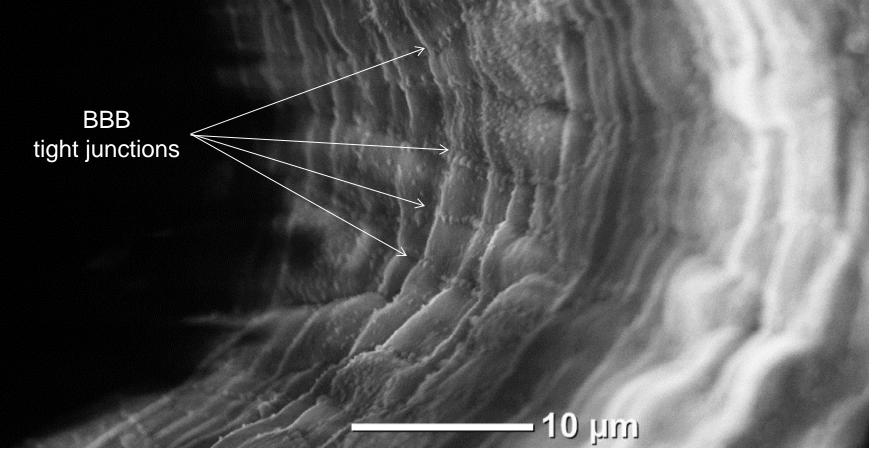


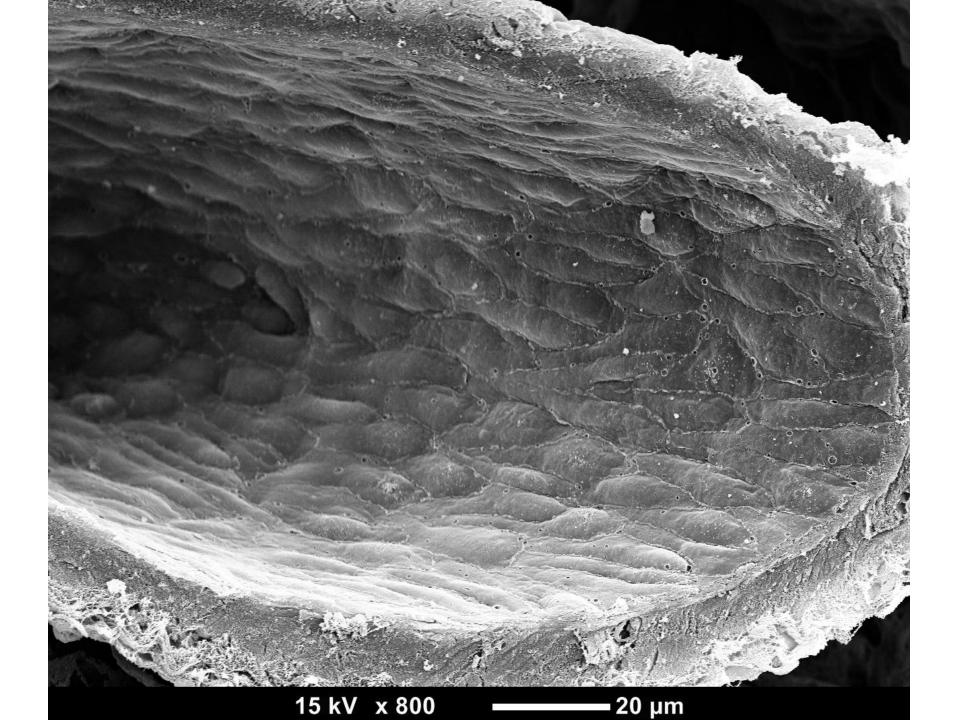

Tight junctions: the primary structural correlate of the BBB


The BBB prevents the entry of most plasma components into the brain

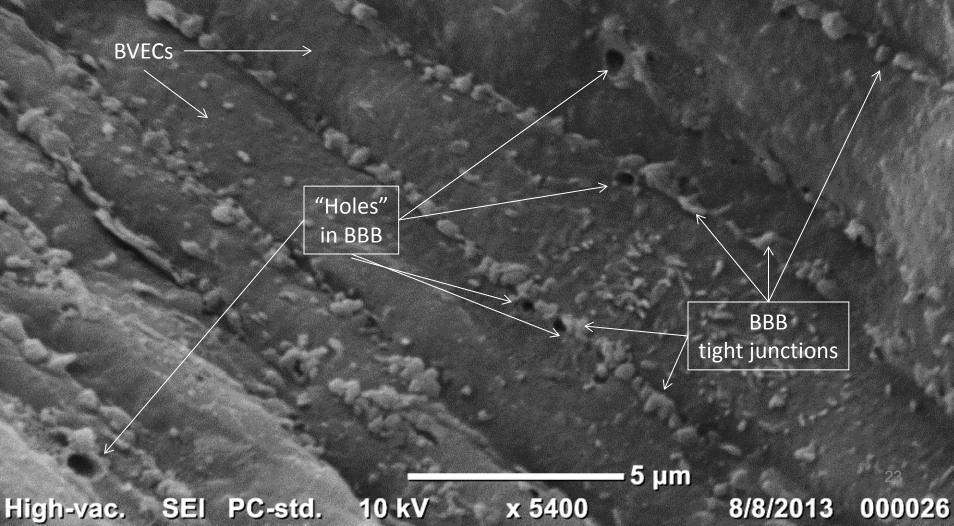

In all AD brains, the BBB is defective Plasma components (including Abeta42) can now leak into the brain and form vascular leak clouds

Abeta42 leak suggests that the main source of soluble amyloid beta (Abeta) in the brain is the blood



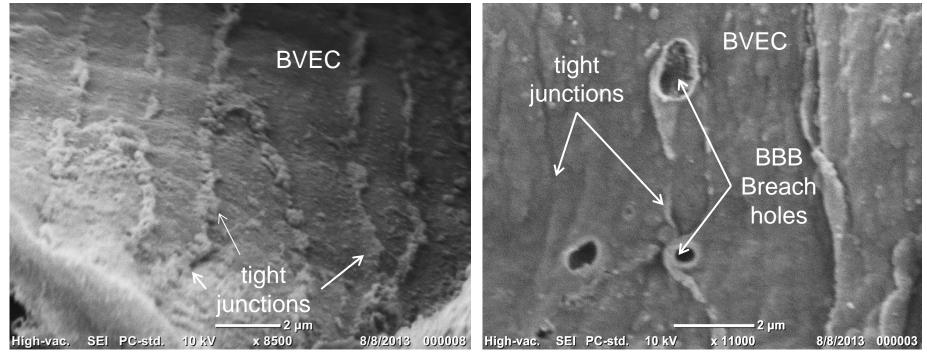

BVECs

Vac-High PC-Std. 10 kV 6/27/2013 000068


The BBB can be visualized directly using SEM leptomeningeal artery wall

Arrows point to BBB – looks like rows of dots

BBB Tight Junctions and Holes in the BBB

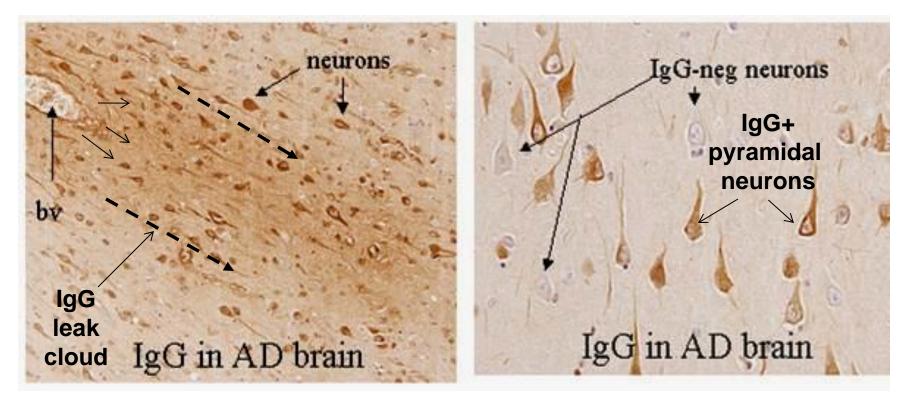


BBB Contact Flaps are Oriented Parallel to Blood Flow in Arterioles

 High-vac.
 SEI
 PC-stdl.
 10 kV
 x 4500
 8/8/2013
 000007

Anesthesia causes short-term BBB breakdown

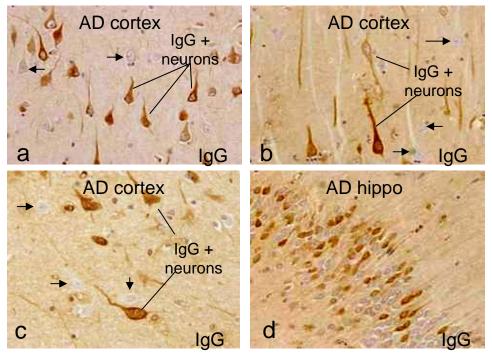
- Probable mechanism of post-surgical delirium and trigger of dementia-

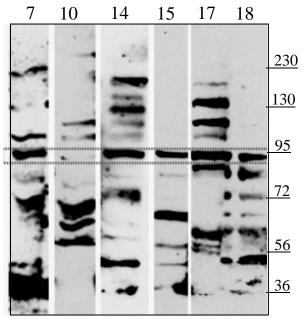

Control 3 hr surgical plane anesthesia Results sevoflurane

- 1. Anesthesia (**sevoflurane** and **isoflurane**) induces immediate changes in the surfaces of brain vascular endothelial cells (BVECs), including a profound **smoothing of surface membranes** and visible **holes in the BBB.**
- 2. Old rats showed much more anesthetic-induced BBB breakdown

Collaboration with Dept. of Anesthesiology at Johns Hopkins via Eli Levin DO-PhD Manuscript in preparation

- Holes in the BBB


Brain-reactive antibodies leak from blood vessels and bind to pyramidal neurons in AD brains


AD brain cerebral cortex

BBB breakdown, autoantibody influx and Alzheimer's disease

Neurons with antibodies (brown color) bound to their surfaces are abundant in all AD brains

Western blot analysis reveals numerous brain-reactive autoantibodies in the blood

Human brain protein probed with human sera

Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood-brain barrier breakdown

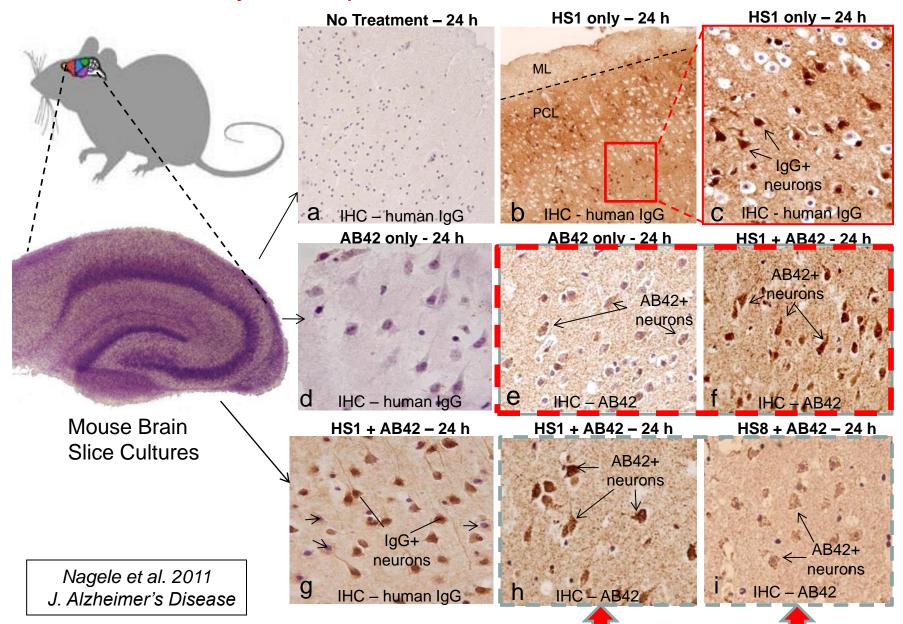
Eli C. Levin^{a,b}, Nimish K. Acharya^b, Min Han^b, Semah B. Zavareh^b, Jonathan C. Sedeyn^b, Venkateswar Venkataraman^c, Robert G. Nagele^{a,*}

^aNew Jersey Institute for Successful Aging, University of Medicine and Dentistry of New Jersey, 2 Medical Center Drive, Stratford, New Jersey 08084, USA ^bGraduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, 2 Medical Center Drive, Stratford, New Jersey 08084, USA ^cDepartment of Cell Biology, University of Medicine and Dentistry of New Jersey, 2 Medical Center Drive, Stratford, New Jersey 08084, USA

Levin et al., 2010 Brain Research, 1345(23):221-232.

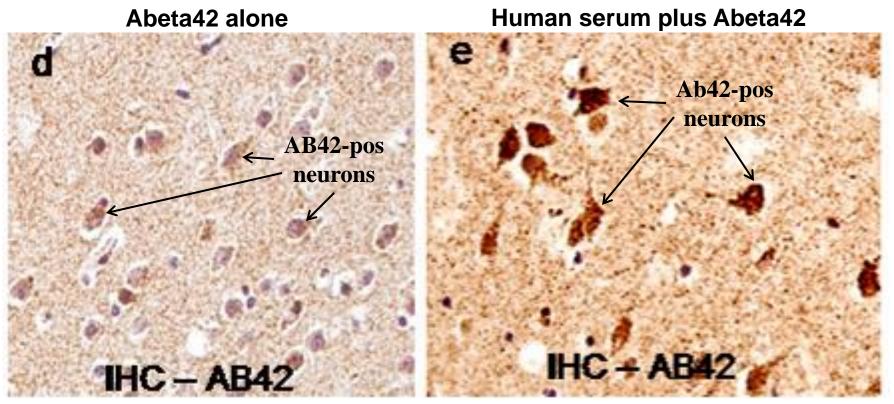
How do neurons respond to autoantibody binding?

Answer


They clean their surfaces by internalizing surface-bound autoantibodies via endocytosis and degrade them in lysosomes

The pathological significance

Abeta42 (amyloid) bound to neuronal cell surfaces is also internalized. Within the lysosomal compartment, Abeta42 self-assembles into fibrils that cannot be degraded.

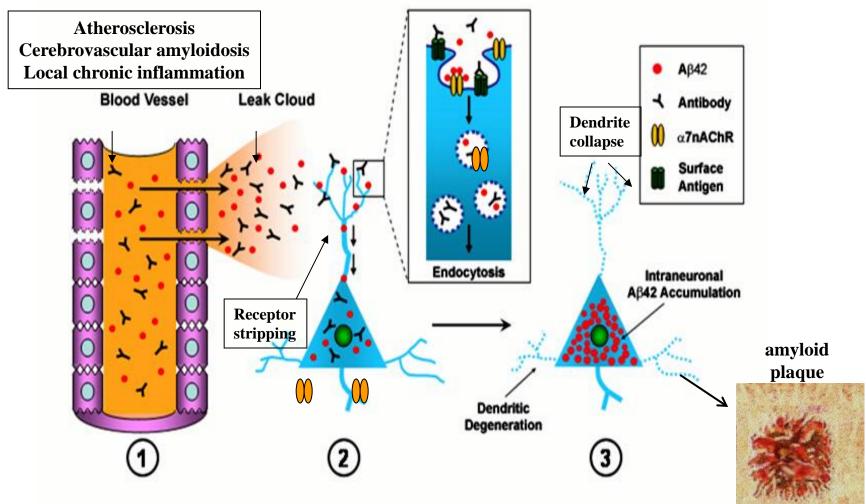

This drives chronic amyloid accumulation within neurons.

Brain-reactive autoautoantibodies in human serum can drive amyloid deposition in mouse neurons *in vitro*

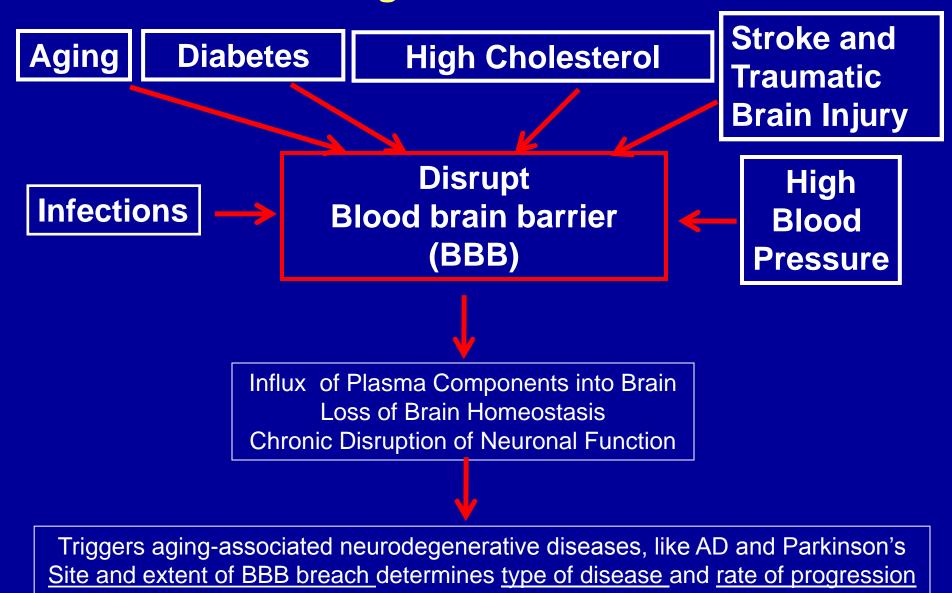
<u>Result</u>: Human autoantibodies dramatically accelerate amyloid deposition in pyramidal neurons in mouse brain

Adult mouse brain slice cultures treated with human serum Ig and Abeta42

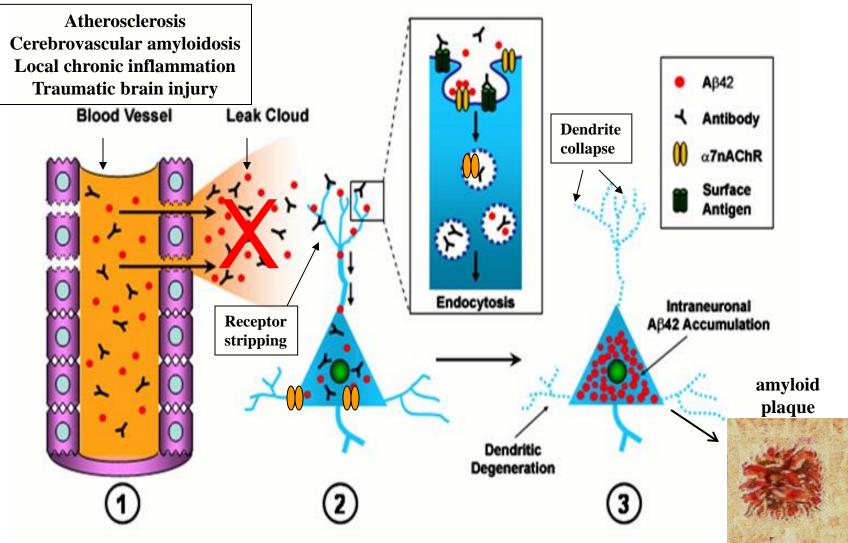
Very little AB42 internalization


Heavy AB42 internalization

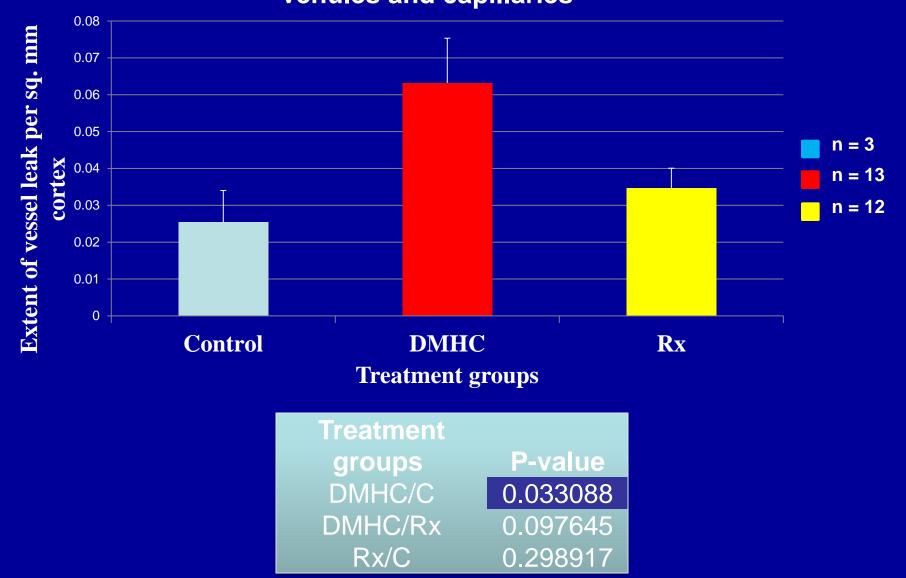
Human autoantibodies enhance intraneuronal Aβ42 deposition in mouse brain slice cultures with different potencies


BBB breakdown triggers Alzheimer's disease Causes intraneuronal amyloid (Abeta) deposition

Binding of autoantibodies to targets on neuronal surfaces induces endocytosis Chronic endocytosis drives surface-bound Abeta42 into neurons


Nagele et al., 2011 J. Alzheimer's Disease

Hypothesis – BBB breakdown can trigger neurodegenerative diseases


Develop drugs/therapies that maintains/repairs BBB integrity

(e.g., Darapladib blocks BBB breakdown in diabetic/hypercholesterolemic (DMHC) pigs

Acharya et al., 2013 J. Alzheimer's Disease

Diabetic/hypercholesterolemic (DMHC) pigs showed the greatest extent of BBB leak and Darapladib reduces vascular leak to control levels Amount of material leaking from arterioles, venules and capillaries

Darapladib Blocks Blood-Brain Barrier Breakdown A Global Treatment for All Neurodegenerative Diseases?

Journal of Alzheimer's Disease 35 (2013) 179–198 DOI 10.3233/JAD-122254 IOS Press 179

Diabetes and Hypercholesterolemia Increase Blood-Brain Barrier Permeability and Brain Amyloid Deposition: Beneficial Effects of the LpPLA2 Inhibitor Darapladib

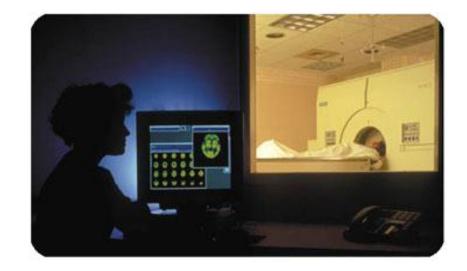
Nimish K. Acharya^{a,e}, Eli C. Levin^{a,e}, Peter M. Clifford^{a,e}, Min Han^{a,e}, Ryan Tourtellotte^f, Dean Chamberlain^f, Michael Pollaro^f, Nicholas J. Coretti^{a,e}, Mary C. Kosciuk^a, Eric P. Nagele^a, Cassandra DeMarshall^a, Theresa Freeman^b, Yi Shi^b, Chenbing Guan^c, Colin H. Macphee^d, Robert L. Wilensky^g and Robert G. Nagele^{a,*} ^aNew Jersey Institute for Successful Aging at University of Medicine and Dentistry of New Jersey (UMDNJ) - School of Osteopathic Medicine, Stratford, NJ, USA ^bThomas Jefferson University, Philadelphia, PA, USA ^cGlaxoSmithKline, Shanghai, China ^dGlaxoSmithKline, King of Prussia, PA, USA ^eGraduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Stratford, NJ, USA ^fUniversity of Medicine and Dentistry of New Jersey - School of Osteopathic Medicine, Stratford, NJ, USA ^gHospital of the University of Pennsylvania, Philadelphia, PA, USA

Handling Associate Editor: Thomas Shea

Funded by GlaxoSmithKline

I think we all agree

Early treatment of Alzheimer's disease (in fact any disease), has the potential benefit of slowing or stopping disease progression before too much brain devastation and loss of function has occurred.

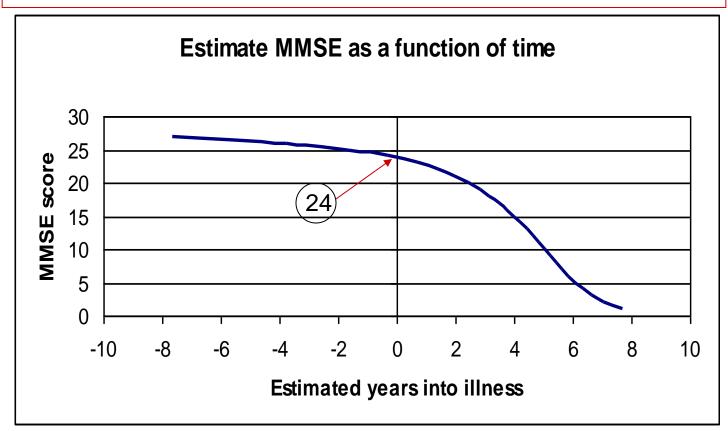

But

Early treatment requires early diagnosis

Current AD Diagnostic Methods

Tools used to diagnose AD:

- A detailed patient history
- Information from family and friends
- Physical and neurological exams and lab tests



- Neuropsychological/cognitive tests
- Imaging tools such as CT scan, or magnetic resonance imaging (MRI).

Problem: These assess <u>symptoms</u>. <u>AD</u> <u>pathology</u> is already pretty far advanced by the time symptoms appear and a definitive diagnosis can be made using these methods.

In other words, it may be too late for treatments to be effective

ALZHEIMER'S DISEASE ASSESSMENT Mini Mental State Exam (MMSE)

Limitations:

False-positives (usually depression with pseudodementia) False negatives (early dementia in high functioning patients) Lack of comprehensiveness

Important Note: AD begins 8-10 years before symptoms are detectable!!

Criteria and Market for an Early Alzheimer's Diagnostic

<u>Diagnosis of AD</u> is <u>expensive</u> and <u>based on detection of telltale symptoms</u>, results from neurological and neuropsychiatric tests and <u>brain imaging</u>. <u>The pathology</u> <u>has already been underway for years</u>.

<u>Accurate early diagnosis of AD</u> at the mild cognitive impairment (MCI) stage is <u>not</u> <u>yet possible</u>.

<u>No blood or laboratory tests for AD exist</u> – the <u>annual world market</u> for a diagnostic test that can detect AD at the early MCI stage is <u>\$3.5 billion</u>.

An <u>intensive worldwide search</u> is underway for <u>useful AD biomarkers</u> and a <u>diagnostic blood test</u> for AD.

Ideal criteria for any diagnostic test include that it must be:

-specific

-reliable and reproducible

-non-invasive or minimally invasive

-simple to perform

-affordable

Early detection of AD at the MCI stage is the goal – because it allows early treatment

Autoantibodies as Blood-Based Disease-Specific Biomarkers: We have discovered that thousands of autoantibodies are present in all human serum

Protein Microarray

Nearly 2,000 autoantibodies are detected using 9,486 human protein targets - this reflects only 1/3 of the total human proteome

Effects of Age and Gender on Number of Autoantibodies in the Blood

Age	Ν	% Female	Antibody Count	P value
				<45 vs. 45-65:
< 45	10	33.3	1498.2 ± 545.7	0.0021
				45-65 vs. >65:
45 - 65	32	18.2	2335.6 ± 1009.5	0.37
				<45 vs. >65:
> 65	15	60	2647.8 ± 1139.2	0.0028
Sex	Ν	Age	Antibody Count	P value
_				
Female	18	57.6 ± 18.7	2772.5 ± 714.8	0.004
Female Male	18 39	57.6 ± 18.7 53.1 ± 15.1	2772.5 ± 714.8 2039.3 ± 1092.7	0.004
	-			0.004

Nagele et al., 2013 PLoS ONE

This discovery has pointed the way to our new disease diagnostics

OPEN O ACCESS Freely available online

Natural IgG Autoantibodies Are Abundant and Ubiquitous in Human Sera, and Their Number Is Influenced By Age, Gender, and Disease

Eric P. Nagele^{1,3}, Min Han^{1,2}, Nimish K. Acharya^{1,2}, Cassandra DeMarshall^{1,2}, Mary C. Kosciuk¹, Robert G. Nagele^{1*}

1 Biomarker Discovery Center, New Jersey Institute for Successful Aging, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America, 2 University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Sciences at the School of Osteopathic Medicine, Stratford, New Jersey, United States of America, 3 Durin Technologies, Inc., New Brunswick, New Jersey, United States of America

Abstract

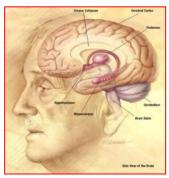
The presence of self-reactive IgG autoantibodies in human sera is largely thought to represent a breakdown in central tolerance and is typically regarded as a harbinger of autoimmune pathology. In the present study, immune-response profiling of human serum from 166 individuals via human protein microarrays demonstrates that IgG autoantibodies are abundant in all human serum, usually numbering in the thousands. These IgG autoantibodies bind to human antigens from organs and tissues all over the body and their serum diversity is strongly influenced by age, gender, and the presence of specific diseases. We also found that serum IgG autoantibody profiles are unique to an individual and remarkably stable over time. Similar profiles exist in rat and swine, suggesting conservation of this immunological feature among mammals. The number, diversity, and apparent evolutionary conservation of autoantibody profiles suggest that IgG autoantibodies have evolved as an adaptive mechanism for debris-clearance, a function consistent with their apparent utility as diagnostic indicators of disease as already established for Alzheimer's and Parkinson's diseases.

Citation: Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, et al. (2013) Natural IgG Autoantibodies Are Abundant and Ubiquitous in Human Sera, and Their Number Is Influenced By Age, Gender, and Disease, PLoS ONE 8(4): e60726. doi:10.1371/journal.pone.0060726

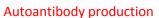
This Study Shows That.....

- 1. All human serum typically contains <u>thousands of autoantibodies</u> targeting a wide variety of proteins.
- 2. Individual autoantibody profiles are <u>stable over long time periods</u> (spanning many years in healthy individuals).
- 3. Similar autoantibody profiles are also found in the rat, mouse and swine, suggesting evolutionary conservation among all mammals.
- 4. The total number of different autoantibodies is strongly influenced by age, gender and the presence of disease.

What is the function of all of these autoantibodies?


Hypothesis

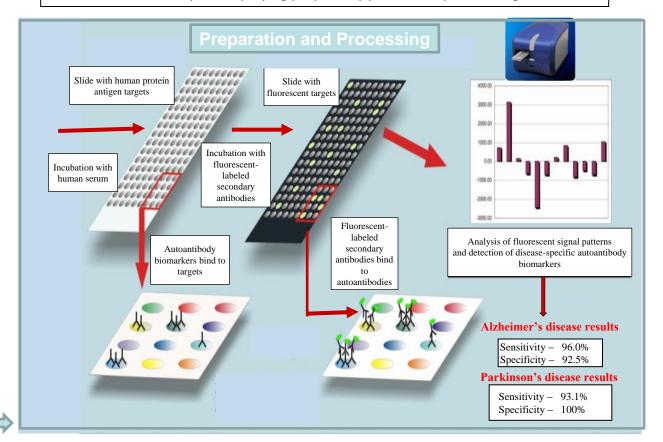
Autoantibodies are involved in the clearance of debris generated by the body on a day-to-day basis.


If so, then.....

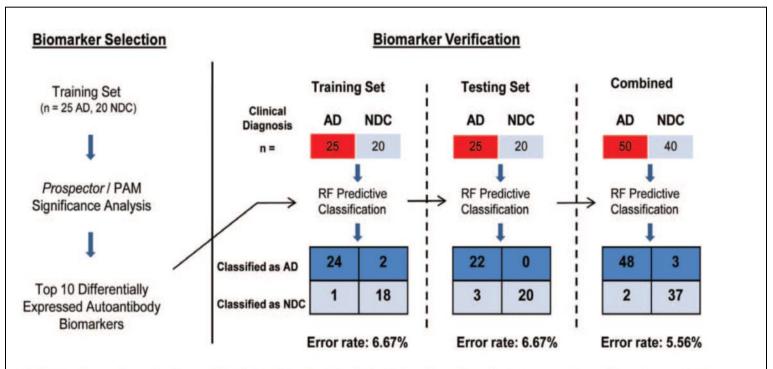
The presence of disease leads to production of excessive debris from the organ affected

....and this leads to an increased abundance of autoantibodies responsible for the clearance of disease-associated debris

Alzheimer's disease


- <u>Neurons die</u> which type of neurons depends on brain region affected
- 2. <u>Dead neurons release their</u> <u>debris</u> into the surrounding cerebrospinal fluid (CSF)
- 3. Debris enters bloodstream and activates the immune system
- 4. Immune system generates many <u>autoantibodies</u> to clear debris
- 5. Durin detects <u>disease-specific</u> <u>autoantibodies as biomarkers</u>

1 drop of blood


Detecting Disease-Specific Autoantibody Profiles Using Human Protein Microarrays

Technology based upon the identification of disease specific autoantibody profiles in blood samples employing proprietary patterns of protein targets.

Alzheimer's Disease – completed! Parkinson's Disease – completed! Multiple Sclerosis – nearly complete Autism – in progress Funded by The Osteopathic Heritage Foundation

Autoantibody Biomarker Selection Strategy Training and Testing Sets

Figure 1. Biomarker selection and Training / Testing Analysis. Before biomarker selection, our total sample pool was split into two randomized groups: the Training Set and Testing Set. *Prospector* and *PAM* statistical analyses were performed on the Training Set to identify the top 10 most significant autoantibody classifiers of AD and NDC. We then verified the diagnostic accuracy of these selected biomarkers by using *Random Forest* to predict sample classification in the Training Set, Testing Set, and then both sets combined. doi:10.1371/journal.pone.0023112.g001

Alzheimer's Disease Results Mild-moderate disease

- Detected <u>451 autoantibodies</u> showing significantly higher prevalence in AD compared to controls (p < 0.01) – these are potentially useful as AD biomarkers.
- 2. Selected <u>the top 10 autoantibodies</u> showing the largest difference in group prevalence as our diagnostic indicators.
- 3. <u>Using only the top 10 indicators</u>, AD sera were distinguished from control sera with a **sensitivity of 96.0% and specificity of 92.5%**

Diagnostic accuracies of the 10 selected AD biomarkers in different sample demographics

Table 2. Diagnostic accuracies of selected biomarkers.

	AD $(n = 50)$ vs.				Earlier-stage AD (n=35) vs.		Later-stage AD (n = 15) vs.		
	All NDC Older Control		Younger Control	PD*	Breast Cancer All N		All NDC Older Control	All NDC	Older Control
	n = 40	40 n = 20	n=20 n=	n = 29	n = 29 n = 30	n=40 n=20			
Sensitivity %	96.0	98.0	98.0	90.0	98.0	97.1	97.1	86.7	93.3
Specificity %	92.5	85.0	90.0	79.3	83.0	92.5	90.0	97.5	90
PPV%	94.1	94.2	96.1	88.2	90.7	91.9	94.4	92.9	87.5
NPV %	94.9	94.4	94.7	82.1	96.2	97.4	94.7	95.1	94.7

*The biomarkers used for this classification are those of Table 5; all others are the biomarkers identified in Table 3. doi:10.1371/journal.pone.0023112.t004

Biomarker Performance Details

- 1. The 10 autoantibody biomarkers diagnosed AD blood samples with 96.0% sensitivity and 92.5% specificity (n=90; 50 AD, 40 Non-Demented Controls).
- 2. The top 10 selected biomarkers diagnosed AD with over 90% accuracy in the following subgroups tested
 - 1. earlier-stage AD makes early AD diagnosis possible
 - 2. later-stage AD,
 - 3. all stages of AD (early plus late)
- 3. AD patients could be distinguished from Parkinson's disease and breast cancer patients, the latter confirming that our test shows no general bias for disease.

OPEN OACCESS Freely available online

Diagnosis of Alzheimer's Disease Based on Disease-Specific Autoantibody Profiles in Human Sera

Eric Nagele¹⁹, Min Han^{2,3}⁹, Cassandra DeMarshall², Benjamin Belinka¹, Robert Nagele³*

1 Durin Technologies, Inc., New Brunswick, New Jersey, United States of America, 2 Graduate School of Biomedical Sciences, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America, 3 New Jersey Institute for Successful Aging, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America, 3 New Jersey Institute for Successful Aging, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America

Abstract

After decades of Alzheimer's disease (AD) research, the development of a definitive diagnostic test for this disease has remained elusive. The discovery of blood-borne biomarkers yielding an accurate and relatively non-invasive test has been a primary goal. Using human protein microarrays to characterize the differential expression of serum autoantibodies in AD and non-demented control (NDC) groups, we identified potential diagnostic biomarkers for AD. The differential significance of each biomarker was evaluated, resulting in the selection of only 10 autoantibody biomarkers that can effectively differentiate AD sera from NDC sera with a sensitivity of 96.0% and specificity of 92.5%. AD sera were also distinguishable from sera obtained from patients with Parkinson's disease and breast cancer with accuracies of 86% and 92%, respectively. Results demonstrate that serum autoantibodies can be used effectively as highly-specific and accurate biomarkers to diagnose AD throughout the course of the disease.

Citation: Nagele E, Han M, DeMarshall C, Belinka B, Nagele R (2011) Diagnosis of Alzheimer's Disease Based on Disease-Specific Autoantibody Profiles in Human Sera. PLoS ONE 6(8): e23112. doi:10.1371/journal.pone.0023112

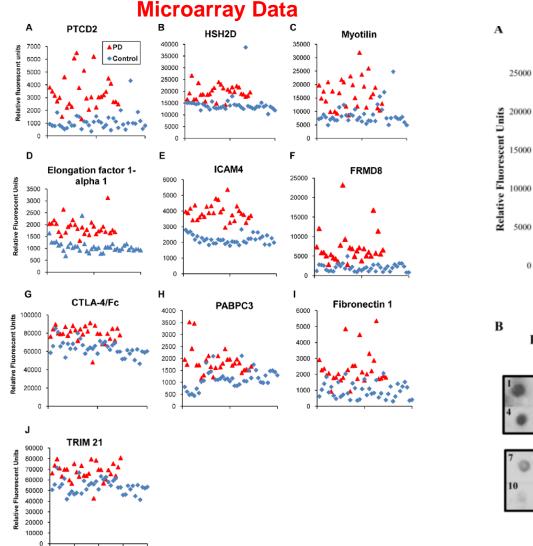
Parkinson's Disease A Multi-Disease Diagnostic Strategy!!

OPEN O ACCESS Freely available online

Diagnosis of Parkinson's Disease Based on Disease-Specific Autoantibody Profiles in Human Sera

Min Han^{1,2®}, Eric Nagele^{3®}, Cassandra DeMarshall^{1,2}, Nimish Acharya^{1,2}, Robert Nagele^{2,3}*

1 University of Medicine and Dentistry of New Jersey-Graduate School of Biomedical Sciences at the School of Osteopathic Medicine, Stratford, New Jersey, United States of America, 2 New Jersey Institute for Successful Aging, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey, United States of America, 3 Durin Technologies, Inc. New Brunswick, New Jersey, United States of America


Abstract

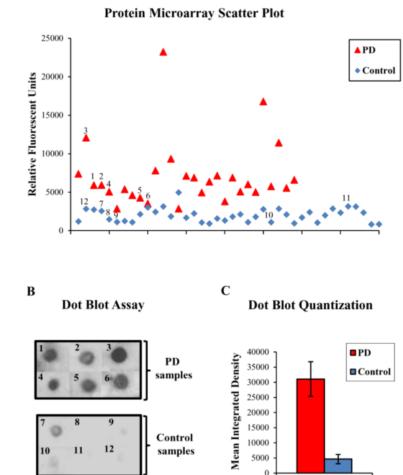
Parkinson's disease (PD), hallmarked by a variety of motor disorders and neurological decline, is the second most common neurodegenerative disease worldwide. Currently, no diagnostic test exists to identify sufferers, and physicians must rely on a combination of subjective physical and neurological assessments to make a diagnosis. The discovery of definitive bloodborne biomarkers would be a major step towards early and reliable diagnosis. Despite attention devoted to this search, such biomarkers have remained elusive. In the present study, we used human protein microarrays to reveal serum autoantibodies that are differentially expressed among PD and control subjects. The diagnostic significance of each of these autoantibodies was evaluated, resulting in the selection of 10 autoantibody biomarkers that can effectively differentiate PD sera from control sera with a sensitivity of 93.1% and specificity of 100%. PD sera were also distinguishable from sera obtained from Alzheimer's disease, breast cancer, and multiple sclerosis patients with accuracies of 86.0%, 96.6%, and 100%, respectively. Results demonstrate that serum autoantibodies can be used as highly specific and accurate biomarkers for PD diagnosis throughout the course of the disease.

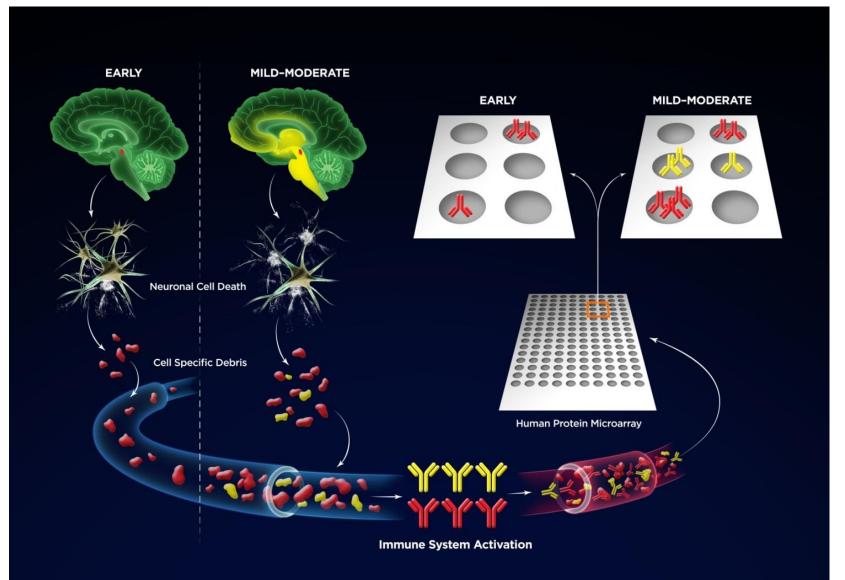
Results:

Mild/moderate PD sera were differentiated from control sera with a **97.1% overall accuracy;** sensitivity of 93.1% and specificity of 100%

Differential Expression of Top 10 Biomarkers for Mild-Moderate PD

Dot-blot confirmation

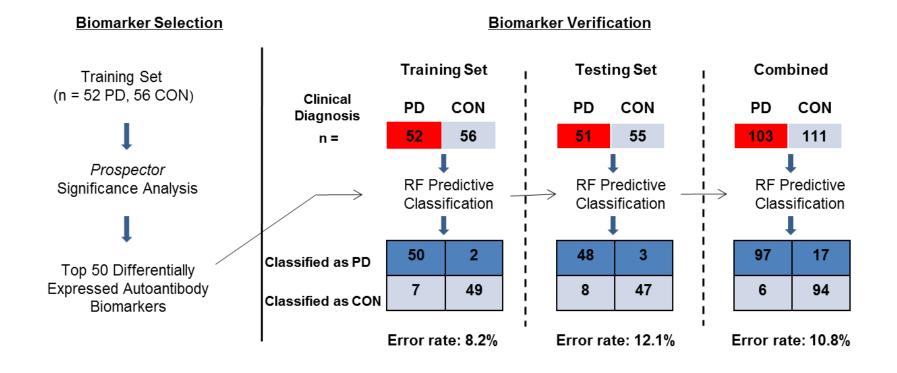



Figure 2. Differential expression of identified PD-specific autoantibody biomarkers in PD and control sera. Microarray fluorescence values reflecting individual serum autoantibody titers demonstrate the differences in the serum expression of the selected ten PD-specific autoantibody biomarkers in PD (n = 29) and control (n = 40) sera (A–I). doi:10.1371/journal.pone.0032383.g002

Early Detection of Parkinson's Disease

In our first study, we achieved early detection of PD with 90.5% accuracy!

Diagnosis of Early- and Mild-Moderate-Stage PD Proposed origin of autoantibodies useful for PD diagnostics

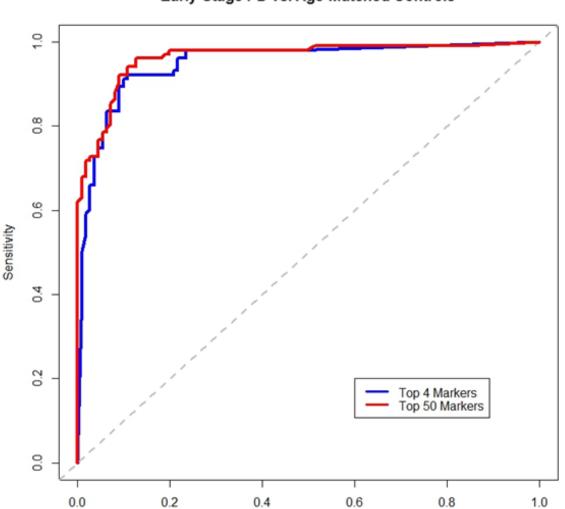

Subject Demographics for Early Parkinson's Study

Early-Stage PD Subjects Obtained From MJ Fox Foundation and Parkinson's Study Group

Group	n	Age		Sex	Ethnicity	UPDRS	Hoehn & Yahr
		(Years)	(Range)	(% Male)	(% Caucasian)		
Parkinson's disease	132	65.1 ± 10.3	37-88	57	89	-	-
-Early-Stage	103	62.7 ± 9.3	37-79	58	98	38.1 ± 16.8	2.1 ± 0.6
-Mild-Moderate	29	74.3 ± 9.0	53-88	55	55	-	-
Controls	156	55.0 ± 15.6	19-87	56	76	-	-
-Age-Matched	111	63.1 ± 8.4	51-87	56	78	-	-
-Non Age-Matched	45	34.9 ± 10.2	19-50	49	71	-	-
Alzheimer's disease	50	78.5 ± 8.8	61-97	42	88	-	-
Multiple Sclerosis	20	51.0 ± 9.2	36-67	33	97	-	-
Breast Cancer	30	46.9 ± 5.8	32-54	0	97	-	-

For each disease group the number of individuals (n), age, range of age, gender, and ethnicity are listed. For the early-stage PD subjects, the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr scores are included as indices of PD severity.

Early-Stage Parkinson's Disease Biomarker Selection and Training/Testing Set Strategy


The total sample pool (n = 214) was randomly split into two groups: the <u>Training</u> <u>Set</u> and <u>Testing Set</u>. <u>Prospector</u> statistical analysis was performed on the Training Set to identify the <u>top 50 most significant autoantibody classifiers</u> of early stage PD. The diagnostic accuracy of these selected biomarkers was tested by using <u>Random Forest</u> to predict sample classification in the Training Set, Testing Set, and both sets combined.

Diagnostic Results Using A Panel of 50 Early-Stage PD Biomarkers and *Random Forest (RF)*.

Early-Stage PD (n = 103) vs.								
	Age Matched Controls	Age Matched and Young Controls	Mild- Moderate PD	Mild- Moderate AD	Multiple Sclerosis	Breast Cancer		
n	111	56	29	50	30	30		
Sensitivity %	94.2	94.2	98.1	98.1	98.1	98.1		
Specificity %	84.7	90.4	100.0	98.0	93.3	96.7		
PPV %	85.1	86.6	100.0	99.0	98.1	99.0		
NPV %	94.0	95.9	93.6	96.1	93.3	93.6		
• Overall Accuracy %	89.2	91.9	98.5	98.0	97.0	97.7		
Overall Error %	10.8	8.1	1.5	2.0	3.0	2.3		

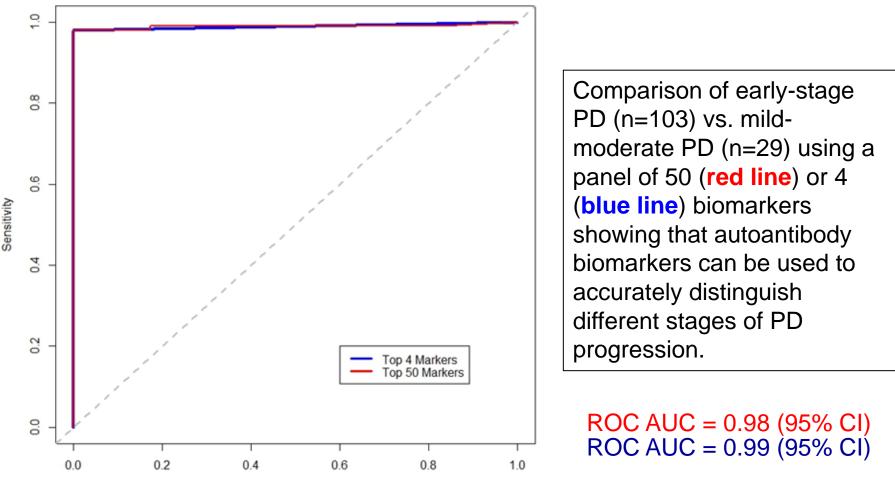
The performance of the top 50 early-stage PD autoantibody biomarkers was assessed using *RF*. PPV, positive predictive value; NPV, negative predictive value.

Detection of Early-Stage Parkinson's Disease ROC Curve Assessment of the Utility of PD Biomarkers for Detection of Early-Stage PD (n=103) vs. Age-matched Controls (n=111)

Early-Stage PD vs. Age-Matched Controls

Comparison of early-stage PD vs. age-matched controls using a panel of 50 (red line) or 4 (blue line) biomarkers shows that these biomarker panels can be used to detect earlystage PD with a relatively high overall accuracy. Dashed line represents line of no discrimination.

ROC AUC = 0.93 (95% Cl) ROC AUC = 0.92 (95% Cl)


ROC Curve Analysis of Diagnostic Utility Using 50 or Only the Top 4 Early-Stage PD Biomarkers

		50 Markers			4 Markers	
Early-Stage PD (n=103) vs.	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)	AUC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Age Matched Controls (n=111)	0.93 (.8899)	0.92 (.8498)	0.87 (.7894)	0.92 (.8697)	0.84 (.7494)	0.87 (.7894)
Age Matched and Younger Controls (n=156)	0.96 (.9398)	0.91 (.8596)	0.94 (.9097)	0.96 (.9398)	0.91 (.8596)	0.94 (.9097)
Mild-Moderate PD (n=29)	0.98 (.97-1)	0.98 (.95-1)	1.00	0.99 (.97-1)	0.98 (.95-1)	1.00
Mild-Moderate AD (n=50)	0.99 (.97-1)	0.98 (.95-1)	1.00	0.99 (.97-1)	0.98 (.95-1)	0.98 (.94-1)
Multiple Sclerosis (n=30)	0.98 (.97-1)	0.98 (.95-1)	1.00	0.99 (.97-1)	0.98 (.95-1)	1.00
Breast Cancer (n=30)	0.99 (.98-1)	0.98 (.93-1)	1.00	0.99 (.97-1)	0.98 (.95-1)	0.97 (.90-1)

ROC curve analyses was used to assess the diagnostic utility of the <u>full</u> <u>panel of 50</u> or only the <u>top 4 selected biomarkers</u> for distinguishing earlystage PD subjects from age-matched controls from the subject groups listed. Areas under the curve (AUC) at 95% confidence are listed along with values for sensitivity and specificity derived from the ROC curve output data.

Staging of Parkinson's Disease ROC Curve Assessment of the Utility of PD Biomarkers for Distinguishing Early-Stage vs. Mild-Moderate PD

Early-Stage PD vs. Mild-Moderate PD

¹⁻Specificity

Conclusions for the Early PD Detection Study

- Using this diagnostic strategy, early-stage PD patients were correctly diagnosed with an overall accuracy of 89.2%, and sensitivity of 94.2% and a specificity of 84.7%.
- These biomarkers were also capable of staging the disease, differentiating patients with early-stage PD from those with mild-moderate PD with an overall accuracy of 98.5%.
- Early-stage PD autoantibody biomarkers are different from those that diagnose mildmoderate PD.
- This appears to be a multi-disease diagnostic strategy, since it now seems to be useful for early-stage PD, mild-moderate PD, mild-moderate Alzheimer's disease, and mild cognitive impairment (MCI) driven by Alzheimer's disease.

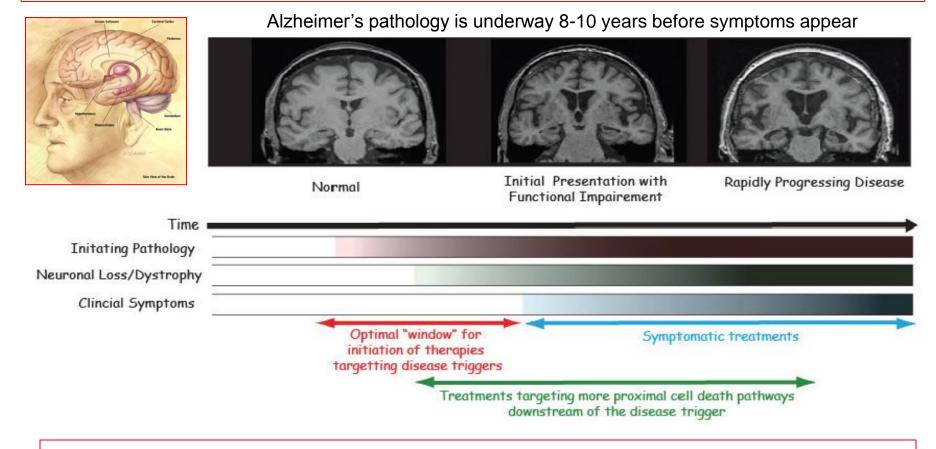
This diagnostic strategy can be used to detect early stages of disease with minimal ongoing pathology.

Lots of Bad News Recently Regarding Failed Clinical Trials of Potential Alzheimer's Drugs

The Wall Street Journal Lilly Alzheimer's Drug Disappoints in Trials Aug. 24, 2012 The drug, <u>solanezumab</u>, failed to meet its primary goals in each study of slowing the

erosion of memory and basic abilities

NY Times


Trials for Alzheimer's Drug Halted After <u>Bapineuzimab</u> Poor Results Johnson & Johnson and Pfizer August 6, 2012

ABC News **Pfizer, Medivation Pull Plug on Alzheimer's Drug <u>Dimebon</u> Jan 17. 2012** Another failure in phase III clinical testing. Dimebon finally sent to the trash heap

WHY?

Answer: The disease is too far advanced. We need early diagnosis, so that early treatments become possible – early treatments are much more likely to be effective.


Detection of AD at the Mild Cognitive Impairment Stage Our goal is to detect Alzheimer's disease in earlier, MCI and pre-symptomatic phases

Early Detection Allows Early Treatment (prior to appearance of symptoms)

Funded by the Osteopathic Heritage Foundation

ADNI-1: Naturalistic study of AD progression

All data in public database: UCLA/LONI/ADNI No embargo of data

- 200 NORMAL 3 yrs
- 400 MCI 3 yrs
- 200 AD 2 yrs
- Visits every 6 mo
- 57 sites
- Clinical, blood, LP
- Cognitive Tests
- 1.5T MRI

Some also have

- 3.0T MRI (25%)
- FDG-PET (50%)
- PiB-PET (approx 100)

Diagnosis of Mild Cognitive Impairment (MCI) in ADNI Patients with Low CSF Abeta42 Levels

Top 10 Biomarkers

All ADNI MCI patients had low CSF Abeta42 levels as surrogate biomarker for AD-related pathology

ADNI MCI (n=50)	ADNI MCI (n=50)				
vs.	vs.				
Age-Matched Controls (n=35)	All Controls (n=111)				
ADNI MCI ~74 yr old; controls ~73 yr old	ADNI MCI ~75 yr old; controls ~63 yr old				
Confusion matrix:	Confusion matrix:				
CON MCI classification error	MCI CON classification error				
CON 34 1 0.02857143	MCI 49 1 0.02000000				
MCI 0 50 0.0000000	CON 2 109 0.01801802				
Error rate: 1.18%	Error rate: 1.86%				
Sensitivity = 100.0%	Sensitivity = 98.0%				
Specificity = 97.1%	Specificity = 98.2%				
PPV = 98.0%	PPV = 96.1%				
NPV = 100.0%	NPV = 99.1%				

Funded by The Osteopathic Heritage Foundation

Specificity of MCI Biomarkers and Staging of AD

(top 50 markers from training set)			
error rate: 2%			
<u>n matrix:</u>			
D class.error			
0.04			
0.00			
- 			

MCI vs. Multiple Sclerosis

(top 50 markers from training set)

OOB estimate of error rate: 0%

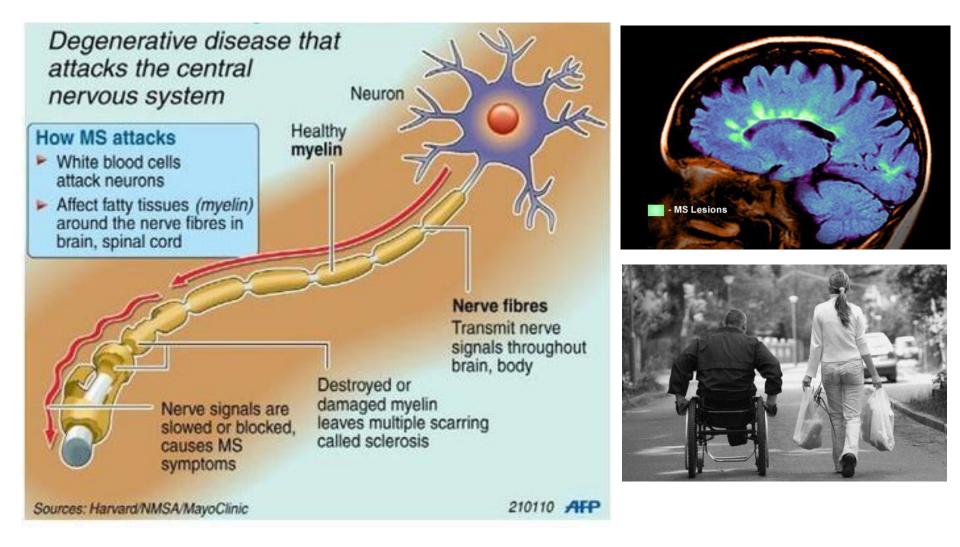
Confusion matrix:

	MCI	MS	classification error
MCI	50	0	0
MS	0	50	0

MCI vs. Breast Cancer

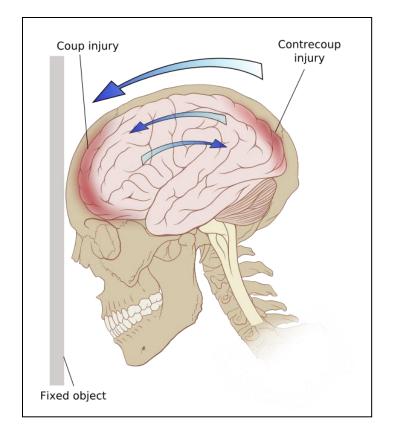
(top 50 markers from training set)

OOB estimate of error rate: 0%


Confusion matrix:

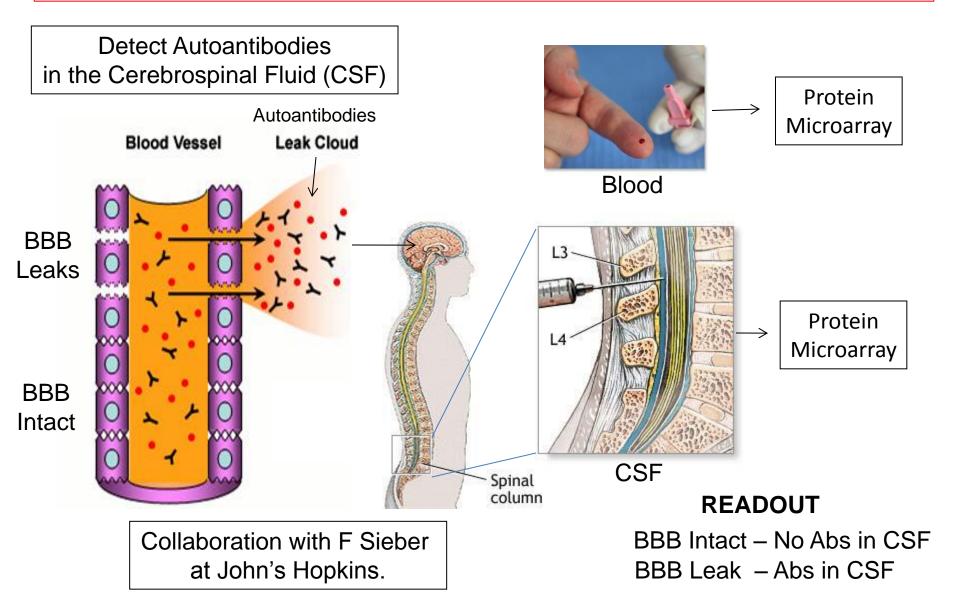
	MCI	BC	classification error
MCI	50	0	0
BC	0	50	0

Capabilities of Our New AD and PD Diagnostic Tests Early Diagnosis Patient Management Test of Drug Efficacy


- 1. <u>Early detection and diagnosis</u> of diseases and traumatic injury (e.g., AD and PD).
- 2. <u>Staging the disease</u> allows physicians to <u>follow disease progress</u> in individual patients.
- 3. <u>Evaluate patient response to drug therapy</u> by monitoring patient progression through clinical stages.
- 4. <u>Confirmation of disease</u> in subjects enrolling in <u>clinical trials</u> of new drugs.
- 5. Allows <u>early enrollment</u> of patients into clinical trials.
- 6. Evaluate patient response to therapy (drug efficacy) in clinical trials of new drugs.

Multiple Sclerosis: Another autoimmune disease

In small patient group – 95% accuracy


Concussion and Traumatic Brain Injury

General Neurodegenerative Disease Biomarkers - Work Underway -

Detection of the Presence and Extent of BBB Breakdown In Post-Surgical Delirium Patients

Schizophrenia?

Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood–brain barrier integrity

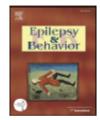
C Hammer¹, B Stepniak¹, A Schneider^{2,3,4}, S Papiol^{1,3}, M Tantra^{1,3}, M Begemann¹, A-L Sirén⁵, LA Pardo⁶, S Sperling¹, S Mohd Jofrry¹, A Gurvich¹, N Jensen¹, K Ostmeier¹, F Lühder⁷, C Probst⁸, H Martens⁹, M Gillis¹⁰, G Saher¹¹, F Assogna¹², G Spalletta¹², W Stöcker⁸, TF Schulz¹⁰, K-A Nave^{3,11} and H Ehrenreich^{1,3}

In 2007, a multifaceted syndrome, associated with anti-NMDA receptor autoantibodies (NMDAR-AB) of immunoglobulin-G isotype, has been described, which variably consists of psychosis, epilepsy, cognitive decline and extrapyramidal symptoms. Prevalence and significance of NMDAR-AB in complex neuropsychiatric disease versus health, however, have remained unclear. We tested sera of 2817 subjects (1325 healthy, 1081 schizophrenic, 263 Parkinson and 148 affective-disorder subjects) for presence of NMDAR-AB, conducted a genome-wide genetic association study, comparing AB carriers versus non-carriers, and assessed their influenza AB status. For mechanistic insight and documentation of AB functionality, in vivo experiments involving mice with deficient bloodbrain barrier (ApoE^{-/-}) and *in vitro* endocytosis assays in primary cortical neurons were performed. In 10.5% of subjects, NMDAR-AB (NR1 subunit) of any immunoglobulin isotype were detected, with no difference in seroprevalence, titer or in vitro functionality between patients and healthy controls. Administration of extracted human serum to mice influenced basal and MK-801-induced activity in the open field only in Apo $E^{-/-}$ mice injected with NMDAR-AB-positive serum but not in respective controls. Seropositive schizophrenic patients with a history of neurotrauma or birth complications, indicating an at least temporarily compromised bloodbrain barrier, had more neurological abnormalities than seronegative patients with comparable history. A common genetic variant (rs524991, P = 6.15E - 08) as well as past influenza A (P = 0.024) or B (P = 0.006) infection were identified as predisposing factors for NMDAR-AB seropositivity. The > 10% overall seroprevalence of NMDAR-AB of both healthy individuals and patients is unexpectedly high. Clinical significance, however, apparently depends on association with past or present perturbations of blood-brain barrier function.

Molecular Psychiatry advance online publication, 3 September 2013; doi:10.1038/mp.2013.110

Collaboration with Prof. H. Ehrenreich at Max Planck

Psychosis?


Epilepsy & Behavior 36 (2014) 33-38

Contents lists available at ScienceDirect

Epilepsy & Behavior

journal homepage: www.elsevier.com/locate/yebeh

Hypothesis

Epilepsy-related psychosis: A role for autoimmunity?

T.A. Pollak ^{a,b,*}, T.R. Nicholson ^{a,b}, J.D.C. Mellers ^c, A. Vincent ^d, A.S. David ^b

^a National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and Institute of Psychiatry, King's College London, UK

b Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK

^c South London and Maudsley NHS Foundation Trust, UK

^d Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK

ARTICLE INFO

Article history: Received 7 March 2014 Revised 22 April 2014 Accepted 23 April 2014 Available online xxxx

Keywords: Autoimmunity Antibody Psychosis Epilepsy Temporal lobe Blood-brain barrier Voltage-gated potassium channel N-methyl-D-aspartate receptor

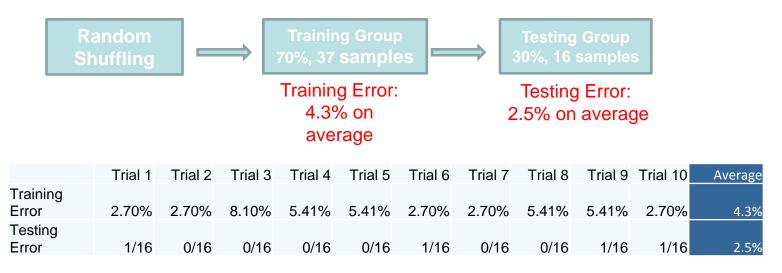
ABSTRACT

Postictal psychosis (PIP) is a serious psychiatric complication of epilepsy that occurs in approximately 6% of patients following multiple complex partial or generalized seizures. The psychosis is classically described as having a pleomorphic phenomenology, including paranoid, grandiose, and religious delusions as well as multimodal hallucinations with prominent affective changes and agitation. Little is understood about the pathophysiology of the condition.

There has been a recent increase in interest in the relevance of autoimmunity to the pathogenesis of both epilepsy and psychosis. Studies have demonstrated the presence of antibodies directed against synaptic autoantigens (such as the N-methyl-D-aspartate receptor or the voltage-gated potassium channel complex) in approximately 10% of cases of sporadic epilepsy. These same autoantibodies are known to cause encephalopathy syndromes which feature psychiatric symptoms, usually psychosis, as a prominent part of the phenotype as well as other neurological features such as seizures, movement disorders, and autonomic dysfunction. It is beginning to be asked if these antibodies can be associated with a purely psychiatric phenotype.

Here, we hypothesize that PIP may be an autoimmune phenomenon mediated by autoantibodies against synaptic antigens. More specifically, we outline a potential mechanism whereby long or repeated seizures cause short-

Collaboration with TA Pollak at King's College London

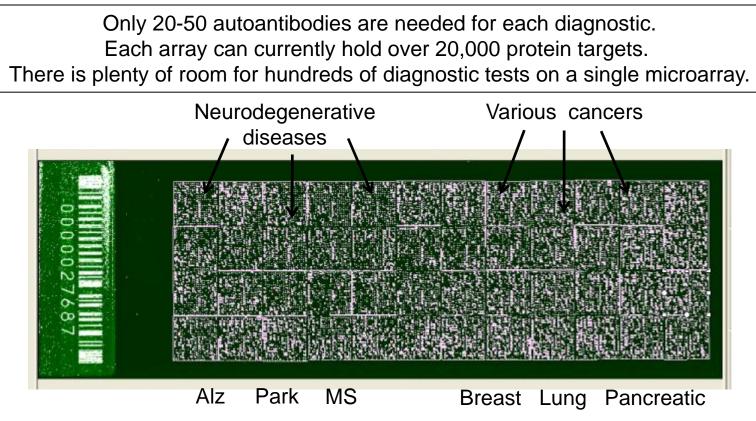

Diagnosis of Stage 0 - 1 Beast Cancer Using Serum Autoantibodies

1. Experimental Design

Subjects	Gender	Sample size	Age
Breast	Female	30	47 ± 5.8
Cancer	remale	30	47 ± 5.0
Control	Female	23	52 ± 16

Detected 301 autoantibodies with significant prevalence difference (P<0.01)

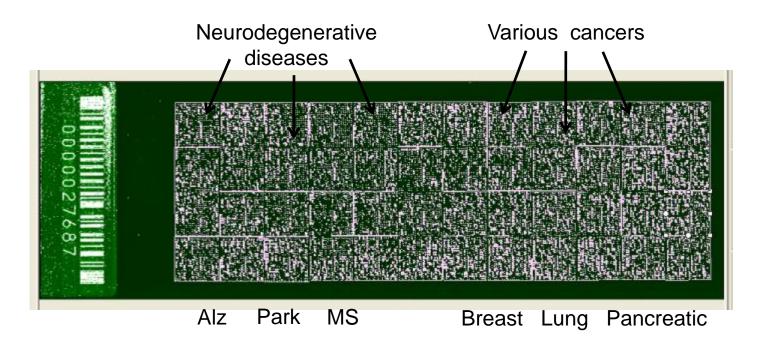
2. Diagnosis of breast cancer using the top 50 biomarkers


Overall Results for Early Stage Breast Cancer - >95% accuracy!

Future Plans and Directions

Short-Term Plans for MCI Diagnostic Test

- 1. Identify biomarkers for AD-driven MCI and patent the MCI biomarkers.
- 2. Complete a large-scale validation study of the MCI diagnostic using serum samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
- 3. Seek FDA approval.


Long-term goal: Construct a Multi-Disease Diagnostic Blood Test

Biomarkers of Therapeutic Efficacy

Concept

If treatments are effective, there should be less disease-associated debris production and a corresponding decrease in autoantibody biomarkers in the blood

Comparison of blood samples before and after drug treatment

RowanSOM NJISA's Biomarker Discovery Center

NIH Biomarker Consortium

NIH National Institute of Aging National Cancer Institute Venture Funds

Private Foundations Alzheimer's Association Michael J Fox Foundation Multiple Sclerosis Society Autism Speaks Breast Cancer Society American Cancer Society Osteopathic Heritage Foundation Collaborations and consultations with individual investigators In house investigators Outside investigators

Collaborations and consultations with Pharma and Biotechs Johnson & Johnson General Electric

Some Members of My Laboratory Family

And The Osteopathic Heritage Foundation

Thank You